Fog computing refers to a specific extension of the standard cloud computing model. It specifies a more decentralized architecture which collaborates with one or more node devices. This provides the subsequent control and configuration of end devices, something that is difficult for standard cloud computing models where data must be accessible centrally.The Fog computing model offers the chance for cloud based services to expand their reach and increases speed of accessibility to such devices.

There are two distinct planes – control and data which is often known as the forwarding plane.The destination and control of data packets is the responsibility of the data plane.This allows specific computing resources to be placed anywhere on the network unlike traditional cloud based computing which has to be focussed on central servers.An overview of the network is provided by the control plane which works with all the routing protocols specific in the architecture.

This Fog model allows data from devices in the Internet of Things to be processed in hardware that can be nearer the origin of the data.  It’s important to remember that the client side architecture is becoming increasingly complex too.  For example many of our devices actually are connected through VPNs or specialist DNS servers, read more in this article – Smart DNS vs VPN.

Cloud computing relies on the existence and a connection to that central server, which means you have to specify connectivity and bandwidth to accommodate this. Not so with the fog computing model, data can easily accessed between local devices – there is no dependency on the cloud. This model improves accessibility and the availability of device data.The idea also promotes collaboration between devices and data centres.

The model will work better in managing the capacity requirements of the IoT whcih is growing exponentially.This rise is partly due to the increase in smartphones and other devices which need access to data handling and computation power often in real time. With the conventional cloud, the smallest piece of data needs to be transmitted up to the central cloud from edge devices – this of course slows the whole network down.

Here’s a Quick Summary of the Advantages

  1. Globally distributed network helps minimal downtime
  2. Load balancing
  3. Maximize network bandwidth utilization
  4. Optimal operational expense
  5. Business Agility
  6. Better Interconnectivity
  7. Enhanced QoS
  8. Latency Reduction

Leave a Reply

Your email address will not be published. Required fields are marked *